
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 488
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Solving Ccomplexity of Structural Clones by using Clone Mining Tool

 Mr.S.B.Wakurdekar Mrs.Y.C.Kulkarni
 Asst.Professor Asst.Professor
 BVDUCOE,Pune BVDUCOE,Pune
 sbwakurdekar@bvucoep.edu.in yckulkarni@bvucoep.edu.in

Abstract— Code clones are similar program structures recurring in variant forms in software system(s). Several techniques
have been proposed to detect similar code fragments in software, so-called simple clones. Identification and subsequent
unification of simple clones is beneficial in software maintenance. Even further gains can be obtained by elevating the
level of code clone analysis. We observed that recurring patterns of simple clones often indicate the presence of interesting
higher-level similarities that we call structural clones. Structural clones show a bigger picture of similarity situation than
simple clones alone. Being logical groups of simple clones, structural clones alleviate the problem of huge number of
clones typically reported by simple clone detection tools, a problem that is often dealt with post detection visualization
techniques. Detection of structural clones can help in understanding the design of the system for better maintenance and in
reengineering for reuse, among other uses. In this paper, we propose a technique to detect some useful types of structural
clones. The novelty of our approach includes the formulation of the structural clone concept and the application of data
mining techniques to detect these higher-level similarities. We describe a tool called Clone Miner that implements our
proposed technique. We assess the usefulness and scalability of the proposed techniques via several case studies. We
discuss various usage scenarios to demonstrate in what ways the knowledge of structural clones adds value to the analysis
based on simple clones alone.

 Index Terms— Design concepts, maintainability, restructuring, reusable software.
.

—————————— ——————————

1 INTRODUCTION

CODE clones are similar program structures of con-
siderable size and significant similarity. Several stud-
ies suggest that as much as 20-50 percent of large
software systems consist of cloned code [2], [16],
[40]. Knowing the location of clones helps in pro-
gram understanding and maintenance. Some clones
can be removed with refactoring [18], by replacing
them with function calls or macros, or we can use
unconventional metalevel techniques such as Aspect-
Oriented Programming [31] or XVCL [27] to avoid
the harmful effects of clones.
 Cloning is an active area of research, with a
multitude of clone detection techniques been pro-
posed in the literature [2], [9], [16], [28], [34], [36].
One limitation of the current research on code clones
is that it is mostly focused on the fragments of dupli-
cated code (we call them simple clones), and not
looking at the big picture where these fragments of
duplicated code are possibly part of a bigger replicat-
ed program structure.
We call these larger granularity similarities structural
clones. Locating structural clones can help us see the
forest from the trees, and have significant value for
program understanding, evolution, reuse, and reengi-
neering.

Figs. 1 show intuitive examples of simple and struc-
tural clones considered in this paper. In Fig. 1, we see
an example of a simple clone set formed by code

fragments (a1, a2, a3). Differences among clones are
highlighted in bold.
 Suppose groups (b1, b2, b3), (c1, c2, c3), . . . ,
(g1, g2, g3) also form simple clone sets.
The examples in Fig. 1 are abstracted from clones
found in Project Collaboration portals developed in
industry using ASP and JEE, and a PHP-based portal
developed in our lab study . Structural clones are
often induced by the application domain (analysis
patterns, design technique (design patterns), or men-
tal templates used by programmers. Similar design
solutions are repeatedly applied to solve similar prob-
lems. These solutions are usually copied from the
existing code. Architecture-centric and pattern-driven
development encouraged by modern component plat-
forms, such as .NET and J2EE, leads to standardized,
highly uniform and similar design solutions. For ex-
ample, process flows and interfaces of the compo-
nents within the system may be similar, resulting in
file or method-level structural clones. Another likely
cause of this higher-level similarity can be the “fea-
ture combinatory problem”.
 Much cloning is found in system variants that
originate from a common base of code during evolu-
tion. Often created by massive copying and modify-
ing of program files, small and large are bound to
occur in such system variants. Software Product Line
approach aims at reuse across families of similar sys-
tems. As we

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 489
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig. 1. A simple clone set formed by similar code fragments

reuse only what is similar, knowing clones helps in
reengineering of legacy systems for reuse. Detection
of large-granularity structural clones becomes partic-
ularly useful in the reuse context.
 While the knowledge of structural clones is
usually evident at the time of their creation, we lack
formal means to make the presence of structural
clones visible in software, other than using external
documentation or naming conventions. The
knowledge of differences among structural clone
instances is implicit too, and can be easily lost during
subsequent software development and evolution.
 The limitation of considering only simple
clones is known in the field. The main problem is the
huge number of simple clones typically reported by
clone detection tools. There have been a number of
attempts to move beyond the raw data of simple
clones. It has been proposed to apply classification,
filtering, visualization, and navigation to help the
user make sense of the cloning information. Another
way is to detect clones of larger granularity than code
fragments. For example, some clone detectors can
detect cloned files, while others target detecting pure-
ly conceptual similarities using information retrieval
methods rather than detecting simple clones.
The examples in Figs. 1 and 2 are abstracted from
clones found in Project Collaboration portals devel-
oped in industry using ASP [42] and JEE [53], and a
PHP-based portal developed in our lab study [43].
Structural clones are often induced by the application
domain (analysis patterns [17]), design technique
(design patterns [19]), or mental templates [9] used
by programmers. Similar design solutions are repeat-
edly applied to solve similar problems. These solu-
tions are usually copied from the existing code. Ar-
chitecture-
centric and pattern-driven development encouraged
by
modern component platforms, such as .NET and
J2EE, leads to standardized, highly uniform, and sim-
ilar design solutions [53]. For example, process flows
and interfaces of the components within the system
may be similar, resulting in file or method-level
structural clones. Another likely cause of this higher-

level similarity can be the “feature combinatorics
problem” [8].
 Much cloning is found in system variants that
originate from a common base of code during evolu-
tion. Often created by massive copying and modify-
ing of program files, clones—small and large—are
bound to occur in such system variants. Software
Product Line approach aims at reuse across families
of similar systems [12]. As we

Fig. 1. A simple clone set formed by similar code fragments

reuse only what is similar, knowing clones helps in
reengineering of legacy systems for reuse. Detection
of
large-granularity structural clones becomes particu-
larly useful in the reuse context .
 While the knowledge of structural clones is
usually evident at the time of their creation, we lack
formal means to make the presence of structural
clones visible in software, other than using external
documentation or naming conventions. The
knowledge of differences among structural clone
instances is implicit too, and can be easily lost during
subsequent software development and evolution.
 The limitation of considering only simple
clones is known in the field. The main problem is the
huge number of simple clones typically reported by
clone detection tools. There have been a number of
attempts to move beyond the raw data of simple
clones. It has been proposed to apply classification,
filtering, visualization, and navigation to help the
user make sense of the cloning information. Another
way is to detect clones of larger granularity than code
fragments. For example, some clone detectors can
detect cloned files while others target detecting pure-
ly conceptual similarities using information retrieval
methods rather than detecting simple clones.

 Clone detection tools produce an overwhelming
volume of simple clones’ data that is difficult to ana-
lyze in order to find useful clones. This problem
prompted different solutions that are related to our
idea of detecting structural clones.
 Some clone detection approaches target large-
granularity clones such as similar files, without speci-

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 490
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

fying the details of the low-level similarities con-
tained inside them. For example, in [15], the authors
consider a whole webpage as a “clone” of another
page if the two pages are similar beyond a given
threshold, computed as the Levenshtein distance.
Without the details of the low-level similarities in the
large-granularity clones, it is not always straightfor-
ward to take remedial actions such as refactoring or
creating generic representation, as these actions re-
quire a detailed analysis of low-level similarities.
Moreover, Clone Miner goes a step ahead in clone
analysis, by looking at the bigger similarity structures
consisting of groups of such highly similar files.
 In contrast, Gemini [49] determines the similar-
ity between pairs of files based on file coverage by
the common simple clones, as detected by CCFinder
[28]. However, Gemini does not go as far as to identi-
fy explicitly the files as clones of each other but only
provides a similarity value. Another limitation of
these tools in terms of identifying filelevel similari-
ties is that only pairs of files are compared rather than
finding groups of similar files, as found by Clone
Miner.
 In Clone Miner, not only do we identify com-
plete sets of large-granularity clones, such as groups
of similar files, methods, and directories, but we also
provide all the lowlevel similarity details that are neces-
sary for refactoring or creating generic representations
to unify these similarities.
 Rieger’s idea of “clone class families” [46],
where clone sets are grouped together based on their
location, is the same as a level 2-B structural clone
detected by Clone Miner. Kapser and Godfrey [29]
have also explored the idea of linking simple clones
with the system architecture.
 The work of De Lucia et al. [14] involves detect-
ing webspecific types of structural clones, where a
clone consists of several webpages linked by hyper-
links. A graph-based pattern-matching algorithm is
used for identifying this type of clones.
 Marcus and Maletic [39] approach the detection
of structural clones from a different perspective. This
work
defines “high-level concept clones” as manifestation
of higher-level abstractions in the problem or solution
domain, giving the example of the ADT list that has
been duplicated in one form or another throughout a
system. The clone detection method is based on ex-
amining source code text (comments and identifiers)
to identify similar high-level concepts. An infor-
mation retrieval approach is used to determine the
semantic similarities in the source code. It is pro-
posed to use these similarity measures to guide the
simple clone detection process. They sum up their
work as an attempt to show that domain concepts can
be used to identify clones (in contrast to common

approach of trying to identify domain concepts using
clone analysis). While there are similarities in the
goals of their work and ours (i.e., both approaches try
to find the higher-level similarities), the promises
made and the methods used are very much different
and complementary. Structural clone detection is an
attempt to move towards high-level similarity pat-
terns, yet firmly rooted in patterns of concrete simi-
larities at implementation level. A structural clone
may indicate a cloned concept (in the requirements or
design space). A “high-level concept clone” stems
from a similarity in concepts. There is no emphasis
on the structure of the clone found, although it may
be a structural clone as well. There may be some
overlap between similarities found by both methods,
also there may be many “concepts” that are not cap-
tured in a “structure” (e.g., two List
 Clone detection techniques using Program
Dependence Graphs (PDG) are described in research
papers. In addition to the simple clones, these tools
can also detect non-contiguous clones, where the
segments of a clone are connected by control and
data dependency information links. Such clones also
fall under the premise of structural clones. While our
technique detects structural clones with segments
related to each other based only on their colocation,
with or without information links, the PDG-based
techniques relate them using the information links
only. Moreover, the clustering mechanism in Clone
Miner, to identify groups of highly similar methods,
files, or directories based on their contained clones, is
missing from these techniques.
 Micropatterns are implementation level pat-
terns that are mechanically recognizable and can be
expressed as a formal condition on the structure of a
class. Some micropatterns may appear as structural
clones, but given the nature of variability that is al-
lowed in the actual implementation of a micropattern,
they may not appear as code clones at all. Structural
clones, on the other hand, are system-specific similar-
ity patterns that may not necessarily reflect best pro-
gramming practices, and hence, may not be described
as micropatterns. However, the benefits provided by
structural clone information, such as avoiding the risk
of update anomalies, help in refactoring, or forming
the generic representation of a system or a Product
Line, cannot be realized by micropatterns. There is
also a fundamental difference in searching for micro-
patterns and detecting structural clones. When look-
ing for micropatterns, we already know precisely
what we are looking for, but detection of structural
clones is finding of unknown patterns. The same is
the case with Pinot that looks for known design pat-
terns in source code.
 PR-Miner is another tool that discovers im-
plicit programming rules using the frequent item set

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 491
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

technique. Compared to structural clones found by
Clone Miner, these programming rules are much
smaller entities, usually confined to a couple of func-
tion calls within a function. The work by Ammons
etal is also similar, finding the frequent interaction
patterns of a piece of code with an API or an ADT,
and representing it in the form of a state machine.
These frequent interaction patterns may appear as a
special type of structural clone, in which the dynamic
relationship of cloned entities is considered. Similar
to Clone Miner, this tool also helps in avoiding up-
date anomalies, though only in the context of anoma-
lies to the frequent interaction patterns. There is also
strong connection between clone detection and the
work done previously on the design recovery and
program understanding of large legacy systems for
ease of maintenance and reuse . Clones, especially
structural clones of large granularity, provide useful
insights into the program structure for better under-
standing of the program. We expect that some of the
structural clones may hint at important concepts be-
hind a program. Cliche´s, as discussed in the “Pro-
grammer’s Apprentice” project , and programming
plans, mentioned by Hartman and Rich and Wills ,
represent commonly used program structures, which
may appear as file-level structural clones within or
across software systems (Product Line members).
Software was searched for these plans (or cliche´s) to
help in program understanding.

2. IMPLEMENTATION

CODE clones are similar program structures of con-
siderable size and significant similarity. The follow-
ing Five techniques are useful for similar programs
structure recurring in software systems. Five mod-
ules have been proposed in the synopsis titled as,

1) Code Preprocessing
 2) Token String with Clones
 3) Pattern Mining
 4) Clone Instances and Clone Regeneration
 5) Identify Clone Behavior

Module 3: Pattern Mining

 This pattern step is designed to handle set-
typed data, where multiple values occur; thus, a naive
approach is to discover repetitive patterns in the in-
put. However, there can be many repetitive patterns
discovered and a pattern can be embedded in another
pattern, which makes the deduction of the template
difficult. We detect every consecutive repetitive pat-

tern (tandem repeat) and merge them (by deleting all
occurrences except for the first one) from small
length to large length.
 To detect a repetitive pattern, the longest pat-
tern length is predicated by the function com-
pLvalueðList; tÞ (Line 1) in Fig.1, which computes
the possible pattern length, called L value, at each
node (for extension t) in List and returns the maxi-
mum L value for all nodes. For the tth extension, the
possible pattern length for a node n at position p is
the distance between p and the tth occurrence of n
after p, or 0 otherwise. In other words, the tth exten-
sion deals with patterns that contain exactly t occur-
rences of a node. Starting from the smallest length i
¼ 1 (Line 2), the algorithm finds the start position of
a pattern by the NextðList; i; stÞ function (Line 4)
that looks for the first node in List that has L equal to
i (i.e., the possible pattern length) beginning at st. If
no such nodes exist, Next returns a negative value
which will terminate the while loop at line 4. For
each possible pattern starting at st with length i, we
compare it with the next occurrence at j ¼ st þ i by
function match, which returns true if the two strings
are the same. The algorithm continues to find more
matches of the pattern (j += i) until either the first
mismatch (Line 7) or the end of the list has encoun-
tered, i.e., j þ i _ 1 _ jListj (line 6). If a pattern is de-
tected (newRep > 0), the algorithm then modifies the
list (modifyList at line 11) by deleting all occurrences
of the pattern except for the first one, recomputes the
possible pattern length for each node in the modified
list (line 12), reinitializes the variables to be ready for
a new repetitive pattern (line 5), and continues the
comparisons for any further repetitive patterns in the
list.
 A pattern mining algorithm is shown below:

 A pattern may contain more than one occur-

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 492
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

rence of a symbol; so the function recursively (with
extension increased by 1) tries to detect such patterns
(line 21). The termination condition is when there is
no more nodes with more than one occurrence or the
list cannot be extended by the function patternCanEx-
tend, which is verified by checking if the length of
List is greater than twice the length of the shortest
repetitive pattern, i.e., jListj < 2ðlbÞðextend þ 1Þ,
where lb is the minimum L value in the current list.
The complexity of the algorithm is quadratic (Oðn2Þ;
n ¼ jListj).
 As an example, we apply the frequent pat-
tern mining algorithm on List1 in Fig. 2 with extend
¼ 1. The L values for the 11 nodes are 3, 1, 2, 2, 4, 2,
4, 2, 0, 0, and 0, respectively. The patterns have
length at most 4 (=K). Note that, the value of K may
be changed after each modification of the list. First, it
looks for 1- combination repetitive patterns by start-
ing at the 2nd node (n2), which is the first node with
L value 1. The algorithm starts at the 2nd (=st) node
to compare every consecutive 1-combination of
nodes,

and the comparison will continue until reaching the
first mismatch at 4th node (n1). At this moment, the
algorithm modifies the list by deleting the 3rd node
(n2) to get List2. The new L values for the 10 nodes
in List2 in order are 2, 2, 2, 4, 2, 4, 2, 0, 0, and 0 (the
value of K is still 4). The algorithm looks for another
repetitive pattern of length 1 in List2 starting from
the 3rd node (st þ 1 ¼ 3), but finds no such nodes (the
function Next returns a value -1). This will end the
while loop (Line 4) and search for 2-combination on
List2 from beginning (Lines 2 and 3). With L value
equals 2 at the first node of List2, it compares the 2-
combination patterns 1-2, 3-4 of List2 to detect a new
repetitive pattern of length 2. The algorithm then de-
letes the second occurrence of the new detected pat-
tern and outputs List3 with L values 2, 4, 2, 4, 2, 0, 0,
and 0. The process goes on until all i-combinations, i
_ K, have been tried. The algorithm then executes for
the second time with extend=2 (Line 21). The new L
values for List3 will be 4, 0, 4, 0, 0, 0, 0, and 0.
Again, starting by 1-combination comparisons until
the 4-combination, the algorithm detects a repetitive
pattern of length 4 by comparing the two 4-
combination 1-4 and 5-8, and finally gets List4 as a
result. Finally, we shall add a virtual node for every
pattern detected.

 An input file is given is preprocessed(use
tokenization strategy) as shown in snapshot1. :

 Snapshot-1: Token string
After the source file is preprocessed, we ap-

ply pattern mining algorithm on it, which shown in
snapshot2.

 Snapshot-2: Repeated pattern counting

Module 4: Clone Instance
 Code clones are similar program structures re-
curring in variant forms in software system(s). De-
tecting similar code fragments in software, so-called
simple clones. Identification and subsequent unifica-
tion of simple clones is beneficial in software
maintenance. We observed that recurring patterns of
simple clones often indicate the presence of interest-
ing “higher-level similarities” that we call structural
clones. Structural clones show a bigger picture of
similarity situation than simple clones alone. Being
logical groups of simple clones, structural clones
alleviate the problem of huge number of clones typi-

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 493
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

cally reported by simple clone detection tools, a prob-
lem that is often dealt with post-detection visualiza-
tion techniques. Detection of structural clones can
help in understanding the design of the system for
better maintenance and in re-engineering for reuse,
among other uses.
 To find clone instance following is the pro-
cedure:
1. Read the input source file(s).

2. Perform the code preprocessing.

3. Apply the pattern mining algorithm to find clone
instances.
 A clone relation is an equivalence relation
(i.e., reflexive, transitive, and symmetric relation) on
code portions. A clone relation holds between two
code portions if (and only if) they are the same se-
quences. For a given clone relation, a pair of code
portions is called clone pair if the clone relation holds
between the portions. An equivalence class of clone
relation is called clone class. That is, a clone class is
a maximal set of code portions in which a clone rela-
tion holds between any pair of code portions. Here,
from clone instances regenerate the original code. As
shown in snapshot3, we put following conditions to
find code clones:

 Finding similar pattern classes.
 Finding similar pattern functions.
 Finding similar pattern structures.
 Finding similar pattern between { }
 View Program: When you click on view

program button, it shows source code of
program.

 View Repeated Pattern: It shows all similar
patterns those are repeated in program.

 As an example we give input file named Stu-
dentReport.project We get following results:

 Snapshot3

 Snapshot4

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 494
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Experimental Result
 Following table shows total number of to-
kens presents in project, Total number of clones pre-
sents in project and system resulted clones.

CONCLUSIONS AND FUTURE WORK

 In this paper, we emphasized the need to study
code cloning at a higher level. We introduced the
concept of structural clone as a repeating configura-
tion of lower-level clones. We presented a technique
for detecting structural clones. The process starts by
finding simple clones (that is, similar code frag-
ments). Increasingly higher-level similarities are then
found incrementally using data mining technique of
finding frequent closed item sets, and clustering. We
implemented the structural clone detection technique
in a tool called Clone Miner. While Clone Miner can
also detect simple clones, its underlying structural
clone detection technique can work with the output
from any simple clone detector. We evaluated the

performance of Clone Miner and assessed its useful-
ness by analyzing structural clones found in a number
of commercial and public domain software systems.
We believe our technique is both scalable and useful.
Structural clone information leads to better program
understanding, helps in different maintenance related
tasks, and points to potential reusable components
across a Product Line. Structural clones are also can-
didates for unification with generic design solutions.
After such unification, programs are easier to under-
stand, modify, and reuse. In the future work, we plan
to extend our technique for finding other, more com-
plex types of similarities and to form taxonomy of
these structural clones. Experimentation with recov-
ery of higher-level design similarities in various ap-
plication domains and performing analytical studies
to measure the precision and recall of the technique
are also part of our future work.
 Implementing good visualizations for higher-
level similarities is currently underway. Analysis of
clones can also be much facilitated by querying the
database of clones. We have already developed a
mechanism of creating a relational database of struc-

tural clones’ data and a query system to facilitate
the user in filtering the desired information.
 Currently, our detection and analysis of
similarity patterns is based only on the physical
location of clones. With more knowledge of the
semantic associations between clones, we can bet-
ter perform the system design recovery. Using
tracing techniques to find associations between
classes and methods, we can automate and build a
clearer picture of the similarity in process flows
within a system to further aid to the user in design
recovery.

ACKNOWLEDGMENTS

 The authors wish to thank Professor William F.
Smyth (for all the help with the algorithms) and stu-
dents Melvin Low Jen Ku (for CAP-WP design re-
covery case study), Zhang Yali (for computing statis-
tics in Section 10), and Goh Kwan Kee and Chan Jun
Liang (for case studies in Section 9). The authors are
also thankful to the anonymous reviewers for their
valuable comments and feedback. This work was
supported by NUS research grant RP-252-000-239-
112.

Program/Project
Name

Total
Number

of to-
kens

presents
in pro-
gram

Classes Functions Structures {
}

View
Repeated
Patterns

Student Report 2565 No Yes No Yes Yes
Super Market 2551 No Yes No Yes Yes
Leap Year 137 No No No Yes Yes
Calculator 632 No No No No Yes
Inheritance 727 No Yes v Yes Yes

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 495
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

REFERENCES
[1] Abouelhoda, M.I., Kurtz, S., and Ohlebusch, E. The

enhanced suffix array and its applications to genome
analysis. In Proc. Workshop on Algorithms in Bioin-
formatics, in Lecture Notes in Computer Science, vol.
2452, Springer-Verlag, Berlin, 2002, pp. 449–463.

[2] Abouelhoda , M. I., Ohlebusch, E., and Kurtz, S. Opti-
mal Exact Strring Matching Based on Suffix Arrays.
In Proceedings of the 9th International Symposium on
String Processing and Information Retrieval, pages
.31-43. September 11-13, 2002.

[3] ANTLR website at http:// www.antlr.org
[4] Basit, H. A., Rajapakse, D. C., and Jarzabek, S. Beyond

Templates: a Study of Clones in the STL and Some
General Implications. In Proceedings of the 28th Intl.
Conf. on Software Engineering (ICSE'05)(to appear).
2005. Draft available at
http://xvcl.comp.nus.edu.sg/xvcl_cases.php

[5] Baker, B. S. On finding duplication and near-
duplication in large software systems. In Proc. 2nd
Working Conference on Reverse Engineering. 1995,
pages 86-95.

[6] Baker, B. S. Parameterized Duplication in Strings: Al-
gorithms and an Application to Software Maintenance.
SIAM Journal of Computing, October 1997.

[7] Baxter, I., Yahin, A., Moura, L., and Anna, M. S. Clone
detection using abstract syntax trees. In Proc. Intl.

Conference on Software Maintenance (ICSM ’98), pp.
368-377.

[8] Biggerstaff, T.J. Design Recovery for Maintenance and
Reuse. Computer 22(7), pp. 36-49, (July 1989).

[9] Buss, E., Mori, R. D., Gentleman, W., Henshaw, J.,
Johnson, H., Kontogiannis, K., Merlo, E., Muller, H.,
Paul, J. M. S., Prakash, A., Stanley, M., Tilley, S.,
Troster, J., and Wong, K., “Investigating reverse engi-
neering technologies for the CAS program understand-
ing project”, IBM Systems Journal, 33(3):477-500,
1994.

[10] Case Study: eliminating redundant codes in the Buffer
library. At XVCL Website,
http://xvcl.comp.nus.edu.sg/xvcl/buffer/index.htm

[11] Church, K. W. and Helfman, J. I. Dotplot: A program
for exploring self-similarity in million of lines of text
and code. Journal of Computational and Graphical
Statistics, June 1993, 2(2):153-174.

[12] Davey, N., Barson, P., Field, S., Frank, R., and Tans-
ley, D. The development of a software clone detector.
International Journal of Applied Software Technology,
1(3-4): 219-236, 1995.

[13] Ducasse, S, Rieger, M., and Demeyer, S. A language
independent approach for detecting duplicated code.
In Proc

